
Simulating spatial data

We’ve talked about simulating simple point patterns

Inference was via simulation
Does observed summary function “look like” simulated patterns?

Now consider simulating geostatistical and areal data

Given a set of locations s, a model, and parameter values
want to generate a set of values for Z(s)

Focus on values from normal distributions, want N(µ, σ2)

If Z independent, easy: generate Z ∼ N(0, 1)
calculate: σ Z + µ

If spatially correlated: want N(µ,Σ)
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Why simulate data?

Want to know about some summary of the spatial data

What proportion of the Swiss Zura has Zn > 10?
Compute from map of prediction
Many summary statistics: ignoring uncertainty ⇒ biased summary
Better to simulate 5-10 data sets, summarize each, average

To better understand uncertainty

In a summary, or a map

Inference when theory inadequate

Often inadequate with non-normal distributions
Or when looking at the covariance parameters

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 2 / 27



Simulating correlated data

a brute-force algorithm:

calculate µ or µ(s) for each location if trend
determine Σ from geostat model or equ’s for CAR/SAR

calculate C = Cholesky square-root decomposition of Σ. C
′
C = Σ

simulate vector of standard normals, Z ∼ N(0, I )

return Z(s) = µ + C
′
Z

Detail:

Matrix algebra defines C as a lower triangular matrix
R chol() function returns an upper triangular matrix,
Above formulae are correct for R parameterization
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Why does this work?

Mean:
E Z(s) = µ+ C

′
E Z = µ

Variance:

Var Z(s) = C
′

Var ZC = C
′
IC = C

′
C = Σ

Distribution: linear combinations of normals are normal

Example:

Σ =

 3 2 1
2 3 2
1 2 3

 , C ≈

 1.75 1.15 0.58
0 1.29 1.03
0 0 1.26


Zs1 = 1.73Z1

Zs2 = 1.15Z1 + 1.29Z2

Zs3 = 0.58Z1 + 1.03Z2 + 1.26Z3
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Timing: k = 50 observations,

simulate 1000 sets separately: 7.18 sec
simulate all 1000 simultaneously: 0.04 sec
Difference is time req. to calculate the Cholesky

Practical use:

either calculate C once, do Z(s) “by hand”
or, simulate many sets, use as needed

Cholesky algorithm fails if Σ is large,

In fact, working with Σ is difficult

1000 locations, Σ is 1000 x 1000 - huge

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 5 / 27



Better algorithms

Many choices: usual goal is reduce memory demand

RandomFields has 11 for Gaussian data
concept for one: “turning bands” algorithm

simulate a direction θk (will have many of these)
simulate Z ’s in chunks along that line (1D problem)
for any s, project s (in 2D) onto the line, record Z at that projected
location
repeat for many (e.g. 10 - 15) directions, average contributions from
all directions
picture on next slide (will be hand-drawn)
The detail is relating the 2D covariance function for Z(s) to the
corresponding 1D covariance function for the line
The advantage is not memory intensive

don’t have to work with NxN matrices
so can use for LARGE problems

And extremely fast
Because easy to simulate chunks along a line

Turning bands is my ’go-to’ algorithm, but glad I don’t have to code it
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Unconditional and conditional simulation

Cholesky and turning bands generate unconditional simulations

Have similar trends and spatial correlation as the data

But, µ and Σ will be similar
And more similar with large sample size

But, no connection to the observed values

Z may look very different
Specifically new Z (s)s at a sample location will vary

Demonstrate with 3 simulated datasets

Show the empirical variograms (as lines) then 3 data plots
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Unconditional simulation:

Empirical variograms for the 3 simulations

1 2 3 4 5 6 7

0
1

2
3

4

Distance

S
em

iv
ar

ia
nc

e

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 9 / 27



Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Conditional Simulation:

Honor the observed data

Simulate of new values conditional on obs. values
predictions at any observed location are always the original value

Given values at obs. locations, simulate values at other points

Two sets of locations:

sc : locations in the original data set
sn: new locations where you want conditional predictions

And one observed set of values: Z (sc)

want to simulate Z (sn, the new random values at {sn}
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Conditional simulation: the usual algorithm

Uses three sets of predictions to make sure that Z (sc) are constant

calculate kriging predictions = Z ∗(sn) using values at Z (sc)

simulate unconditional random field at {sc} = Z ◦(sc)

simulate 2nd unconditional random field at {sn} = Z ◦(sn)

calculate kriging predictions = Z †(sn) using values at Z ◦(sc)

return Z ∗(sn) + Z ◦(sn)− Z †(sn)
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Conditional simulation in pictures

Observed data (simulated values, not a “real” dataset)
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Conditional simulation in pictures

Conditional simulation # 1
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Conditional simulation in pictures

Conditional simulation # 2
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Conditional simulation in pictures

Conditional simulation # 3
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Conditional simulation properties

If s is a conditioning point (obs. value), i.e. one of the locations in
the {sc} set,

1st kriging prediction: Z∗(sc) = obs. value, Z (sc)
2nd kriging prediction: Z †(sc) = obs. value, Z◦(sc)
so returned value is obs. value, Z (sc)

If sn is far from any obs. loc, sc :

Z∗(sn) = µ and Z †(sn) = µ
so return the unconditional predictions, Z◦(sn)

Both behaviours for extreme situations “make sense”

Usually only used for geostat data.

With areal data, have an obs. value for all regions in study area
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How could we use this?

Given observed values, what fraction of the area > 7?

Estimate by ordinary kriging to predict at fine grid
Estimate proportion of predictions > 7
I don’t have that estimate: let’s say it’s 20% of area

How uncertain?

Conditional simulation given data
Three simulations: 19%, 18.5%, 21.5%
100 simulations: mean = 18.7%, sd = 2.8%

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 20 / 27



Conditional estimates of proportion > 7
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Simulating point patterns

Have seen simulating CSR, without discussing details

Big question: is N known or random?

Known: every realization has 100 (or 224, or 59) points
Binary process: N fixed
Random: N ∼ some distribution, N not constant
Poisson process: N ∼ Pois (λ A)

simulate N, then simulate locations of N events
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Simulating point patterns

2nd question: is study area rectangular or irregular

rectangular, Lx by Ly : X ∼ Unif (0, Lx), Y ∼ Unif (0, Ly )
irregular:

find bounding box
simulate within bounding box
keep observations within study region

How many events to simulate in the bounding box?

Poisson: Nbb ∼ Pois (λ BBox area), gives Pois (λA) in study area
Binary: Nbb = 1.2λ BBox area
keep first N events. 1.2 is ad hoc. Can also simulate sequentially.
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Simulating locations with trend

What if λ(s) = f (X (s))?

Use a rejection algorithm (Lewis and Shedler)

Find Lm = maxλ(s) in the study region
Simulate LmA locations (s1, s2, · · · sk)
Calculate pi = λ(si )/Lm for each event
Retain the point with probability pi

i.e., simulate Ui ∼ Unif (0, 1) for each event
retain the point if Ui ≤ pi

Intensity at location si = Lmpi = λ(si )
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Simulating non-Poisson processes

Neyman-Scott: follow the definition

Simulate k locations for mothers
For each mom, simulate Ni ∼ Pois (µ) # of daughters
Simulate locations of each daughter around Mom

Strauss (inhibition) processes

Harder, usually done with a sequential algorithm
given set of locations (current events)
simulate potential location of next event, snew
use inhibition model to calculate λ(snew )
retain with probability λ(snew )/λ
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Pattern reconstruction

What if you don’t have a model (or don’t trust your model)?

Pattern reconstruction generates random patterns “like” some
observed pattern

You specify what characteristics that should match

such as K (r) and nearest-neighbor distance D(r)

Basic idea, to match observed locations O

Simulate an arbitrary set of locations: L1
Randomly delete one location and simulate another: L2
For both sets, L1 and L2 calculate “Energy”

quantifies discrepancy between O and Li

Keep the set with the lower energy

i.e., keep the new location if it improves the fit

Repeat until arbitrarily close to observed pattern
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Pattern reconstruction

An example of simulated annealing, a technique for optimization of
difficult problems

Lots of details that I’m skipping

More complete descriptions are:

Wiegand and Moloney, pp 276-287
Illian et al. pp 407-415

Wiegand et al 2013 Ecography considered which summary statistics
provide the most information for reconstructing patterns

Implemented in the shar library (species-habitat associations)

Look at the relationships between species occurrences and habitat
information
Need to account for potential correlation in occurrence.
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