Simulating spatial data

@ We've talked about simulating simple point patterns

e Inference was via simulation
e Does observed summary function “look like" simulated patterns?

@ Now consider simulating geostatistical and areal data

@ Given a set of locations s, a model, and parameter values
want to generate a set of values for Z(s)

@ Focus on values from normal distributions, want N(p,02) &w&
. i = Jole_
o If Z independent;<asy: generate Z ~ N(0,1) -

calculate: 0 Z +n ;;>‘\J CMJUQI gh‘Q. N ma_\
o If spatially correlated: want N(u, ¥)

e
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Why simulate data?

ot \«5 Y = l:;asekeskgil 7

@ Want to know about some summary of the spatial data
e What proportion of the Swiss Zura has Zn > 107
. —_—
o Compute from map of prediction
e Many summary statistics: ignoring uncertainty = biased summary
- o —_
o Better to simulate 5-10 data sets, summarize each, average
- 07 Y Catd oE

—

@ To better understand uncertainty 7> (’c—g_géjs_geg\

e In a summary, or a map
@ Inference when theory inadequate

e Often inadequate with non-normal distributions
e Or when looking at the covariance parameters
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Simulating correlated data
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@ a brute-force algorithm:

calculate p or p(s) for each location if trend o = r’—
determine X from geostat model or equ's for CAR/SAR

o calculate C = Cholesky' square-root decomposition of X. =%

e simulate vector of standard normals, Z N(O, 1)

@ Detail:

JC

Zoau(r ) A

Matrix algebra defines C as a lower triangular matrix C C i
R chol() function returns an upper triangular matrix,
Above formulae are correct for R parameterization

return Z(s) = u+ c'z

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 3/27



Why does this work?

@ Mean:
EZ(s)=pu+C EZ=0yu

@ Variance:

Var Z(s)=C Var ZC=CIC=CC=%

@ Distribution: linear combinations of normals are normal
,.—______‘-_________—__._____.-‘ ._—-—-—'___

o Example:

o Z, =1.73Z
o Z, =1157; +1.297,
o Z;, =0.587; +1.032, + 1.26%5
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@ Timing: k = 50 observations,
e simulate 1000 sets separately: 7.18 sec
o simulate'all T000 simultaneously: 0.04 sec /
o Difference is time req. to calculate the Cholesky
@ Practical use:
o either calculate C once, do Z(s) "by hand”
e or, simulate many sets, use as needed

@ Cholesky algorithm fails if X is large,
@ In fact, working with X is difficult
e 1000 locations, X is 1000 x 1000 - huge

B S ——
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Better algorithms

@ Many choices: usual goal is reduce memory demand

@ RandomFields,has 11 for Gaussian data
@ concept for one: “turning bands” algorithm
o simulate a direction 6y (will have many of these)
o simulate Z's in chunks along that line (1D problem)
o for any s, project s (in 2D) onto the line, record Z at that projected
location
o repeat for many (e.g. 10 - 15) directions, average contributions from
all directions
e picture on next slide (will be hand-drawn)
o The detail is relating the 2D covariance function for Z(s) to the
corresponding 1D covariance function for the line
o The advantage is not memory intensive
@ don't have to work with NXN matrices
@ so can use for LARGE problems
e And extremely fast
@ Because easy to simulate chunks along a line

e Turning bands is my 'go-to’ algorithm, but glad | don’t have to code it
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Unconditional and conditional simulation

Cholesky and turning bands generate unconditional simulations

Have similar trends and spatial correlation as the data

e But, 1 and X will be similar
o And more similar with large sample size

@ But, no connection to the observed values

e Z may look very different
o ‘Specifically new Z(s)s at a sample location will vary

Demonstrate with 3 simulated datasets

@ Show the empirical variograms (as lines) then 3 data plots
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Unconditional simulation:

Empirical variograms for the 3 simulations
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Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Conditional Simulatio

Honor the observed data
o Simulate of new values conditional on obs. values
. . ’_'—'-'-_._'_'-..-___-— - .
e predictions at any observed location are always the original value&

Given values at obs. locations, simulate values at other points

Two sets of locations:

o S.: locations in the original data set

e s, new locations where you want conditional predictions
"

And one observed set of values: Z(s.)
want to simulate Z(s,,)the new random values at {s,}
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Conditional simulation: the usual algorithm

Uses three sets of predictions to make sure that Z(s.) are constant
calculate kriging predictions = Z*(s,,) using values at Z(s.)
simulate unconditional random field at {s.} = Z°(s.)

simulate 2nd unconditional random field at {s,} = Z°(s,)
calculate kriging predictions = Z'(s,) using values at Z°(s.)
return Z*(s,) + Z°(sn) — Z'(sn)
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Conditional simulation in pictures

Observed data (simulated values, not a “real” dataset)

' o @ v [0.796,2.608]
¢ 0 0 o 2608 4419]

' (2.608,
' Coe ] e (44196231
oo (6.231,8.042
O (8.042,0.854]
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Conditional simulation in pictures

Conditional simulation # 1
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Conditional simulation in pictures

Conditional simulation # 2
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Conditional simulation in pictures

Conditional simulation # 3
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Conditional simulation properties

e If s is a conditioning point (obs. value), i.e. one of the locations in
the {s.} set,
o 1st kriging prediction: Z*(s.) = obs. value, Z(s.)
o 2nd kriging prediction: Zf(s.) = obs. value, Z°(s.)
o so returned value is obs. value, Z(s.)
e If s, is far from any obs. loc, s.:
o Z*(sp) = pand Zi(s,) = u
e so return the unconditional predictions, Z°(s,)
@ Both behaviours for extreme situations “make sense”
@ Usually only used for geostat data.
o With areal data, have an obs. value for all regions in study area

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020 19 /27



How could we use this?

@ Given observed values, what fraction of the area > 77

e Estimate by ordinary kriging to predict at fine grid

o Estimate proportion of predictions > 7

o | don't have that estimate: let's say it's 20% of area
@ How uncertain?

e_Conditional simulation given data

o Three simulations: 19%, 18.5%, 21.5%

e 100 simulations: mean = 18.7%, sd = 2.8%
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Conditional estimates of proportion > 7
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Simulating point patterns
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@ Have seen simulating CSR, without discussing details
@ Big question: is N known or random?

o Known: every realization has 100 (or 224, or 59) points
Binary process: N fixed

e Random: N ~ some distribution, N not constant
Poisson process: N ~ Pois (A A)

@ simulate N, then simulate locations of N events
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Simulating point patterns

@ 2nd question: is study area rectangular or irregular

o rectangular, L, by L,: X ~ Unif (0, L), Y ~ Unif (0,L,)

e irregular:
o find bounding box
@ simulate within bounding box
o keep observations within study region

e How many events to simulate in the bounding box?
@ Poisson: Ny, ~ Pois (A BBox area), gives Pois (AA) in study area
o Binary: Np, = 1.2\ BBox area

keep first N events. 1.2 is ad hoc. Can also simulate sequentially.

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 9 Spring 2020



Simulating locations with trend

e What if \(s) = f(X(s))?

@ Use a rejection algorithm (Lewis and Shedler)
Find L, = max A(s) in the study region
Simulate L,A locations (s1, 2, -+ Sk)

Calculate p; = A(s;)/Lm for each event
Retain the point with probability p;

e i.e., simulate U; ~ Unif (0,1) for each event
o retain the point if U; < p;

@ Intensity at location s; = Ly,pi = A(s))
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Simulating non-Poisson processes

@ Neyman-Scott: follow the definition
e Simulate k locations for mothers
e For each mom, simulate N; ~ Pois (u) # of daughters
e Simulate locations of each daughter around Mom
@ Strauss (inhibition) processes
o Harder, usually done with a sequential algorithm
e given set of locations (current events)
e simulate potential location of next event, Spey
o use inhibition model to calculate A(Spew)
o retain with probability A(Spew)/A
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Pattern reconstruction

e What if you don’t have a model (or don't trust your model)?

@ Pattern reconstruction generates random patterns “like” some
observed pattern
@ You specify what characteristics that should match
e such as K(r) and nearest-neighbor distance D(r)
o Basic idea, to match observed locations O
e Simulate an arbitrary set of locations: L

e Randomly delete one location and simulate another: L,
e For both sets, L; and L, calculate “Energy”

@ quantifies discrepancy between O and L;
Keep the set with the lower energy

@ i.e., keep the new location if it improves the fit
o Repeat until arbitrarily close to observed pattern
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Pattern reconstruction

@ An example of simulated annealing, a technique for optimization of
difficult problems
o Lots of details that I'm skipping
@ More complete descriptions are:
e Wiegand and Moloney, pp 276-287
o lllian et al. pp 407-415
o Wiegand et al 2013 Ecography considered which summary statistics
provide the most information for reconstructing patterns
@ Implemented in the shar library (species-habitat associations)

o Look at the relationships between species occurrences and habitat
information
o Need to account for potential correlation in occurrence.
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